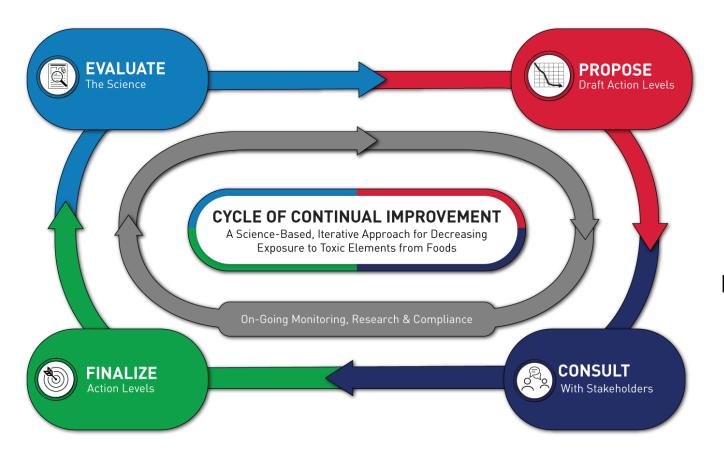


Current approaches to quantify ultra-low (part per billion) levels of elements in foods


Patrick J. Gray patrick.gray@fda.hhs.gov

FDA Center for Food Safety and Applied Nutrition 25 October 2022

FDA Closer to Zero Action Plan

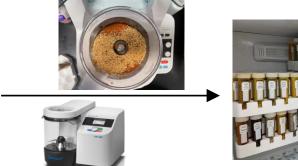
analytical
methods and data
collection are
involved in all 4
stages of the
Closer to Zero
Plan

data driven,
science backed
action levels
require
measurement at
part per billion
levels

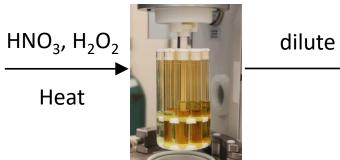
Elemental Analysis: MW ICP-MS

1. Homogenize foods

Elemental Analysis: MW ICP-MS



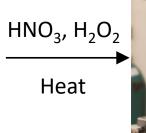
1. Homogenize foods

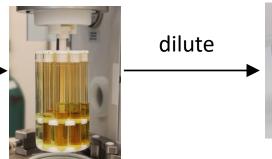


2. Decompose (digest) in microwave

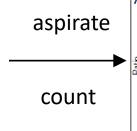
Elemental Analysis: MW ICP-MS

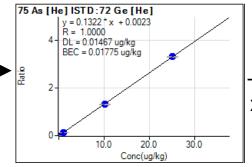
1. Homogenize foods

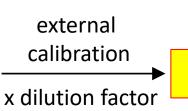




2. Decompose (digest) in microwave



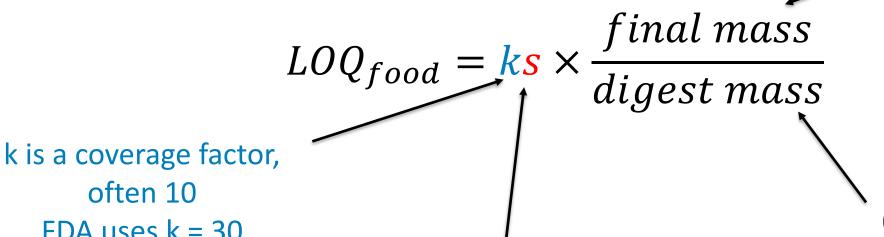




3. Analyze by ICP-MS

Answer!

Limit of Quantification



$$LOQ_{food} = LOQ_{test\ solution} \times Dilution\ Factor$$

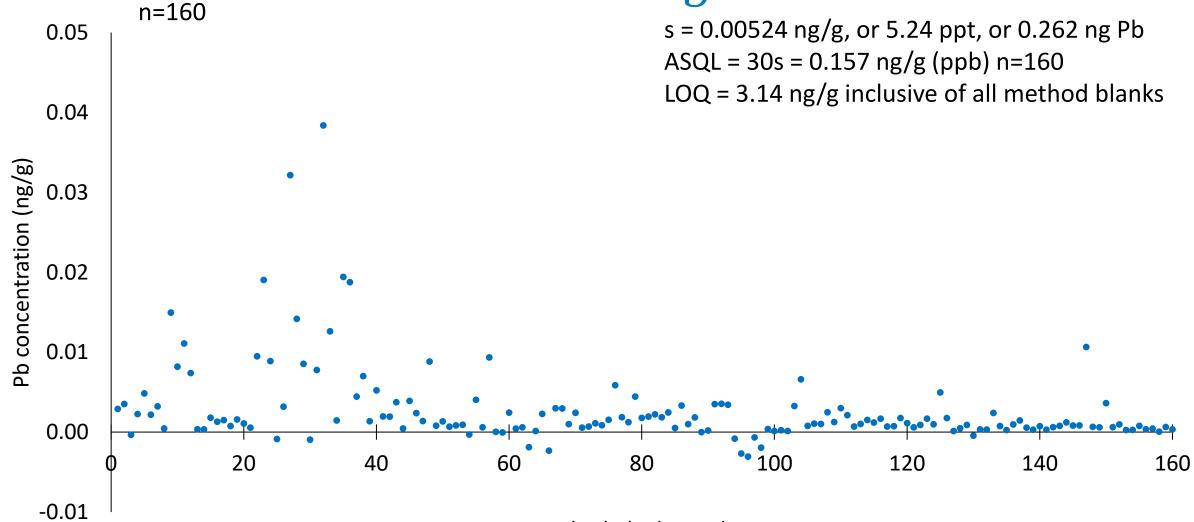
Limit of Quantification

$$LOQ_{food} = LOQ_{test\ solution} \times Dilution\ Factor$$

final digest dilution mass, typically 50 g

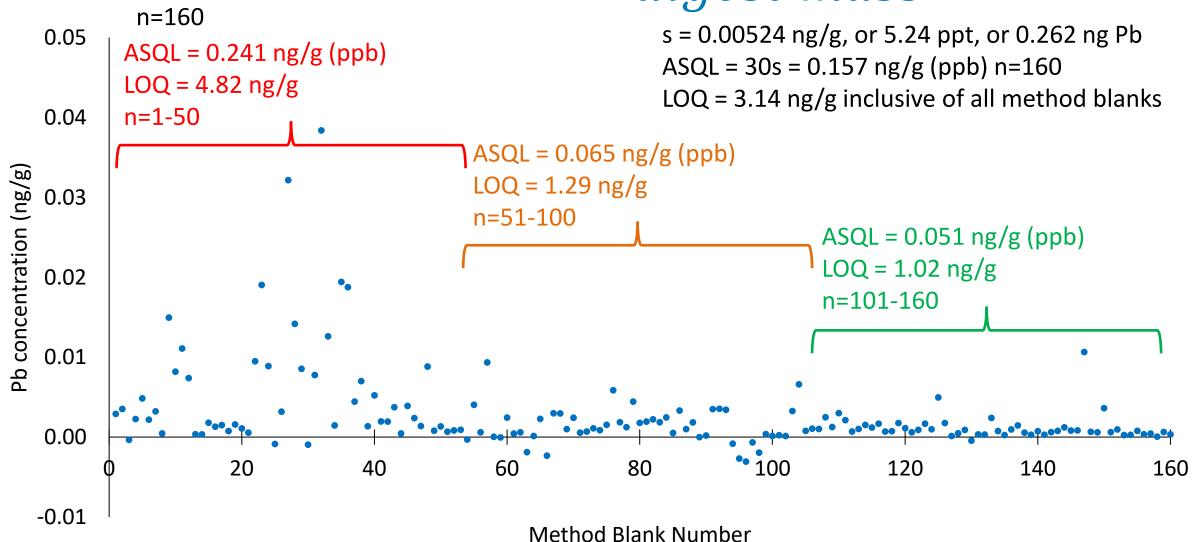
s is the standard deviation of method blanks

amount of food digested (g), typically 0.5 g for dry foods, up to 2-3 g for baby foods


often 10

FDA uses k = 30

$LOQ_{food} = ks \times \frac{final\ mass}{digest\ mass}$



8

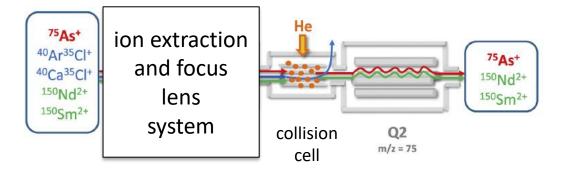
$LOQ_{food} = ks \times \frac{final\ mass}{digest\ mass}$

Limit of Quantification

Detection and Quantification limits are determined by the **spread** of **method** blank values

Blank values vary due to contamination

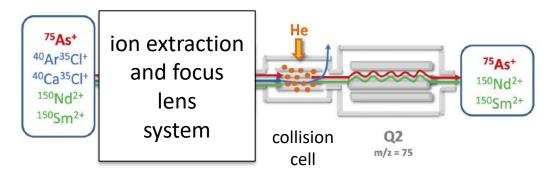
Reagent contamination (e.g. dirty, low purity acids) are uniform


It would be easy to subtract a consistent contamination

Contamination in elemental analysis is dominated by microwave vessels (unpredictable carryover)

What about \$\$\$ instruments?

Single Quad ICP-MS (\$)


He collision gas mitigates polyatomic interferences

Triple Quad ICP-MS (\$\$\$)

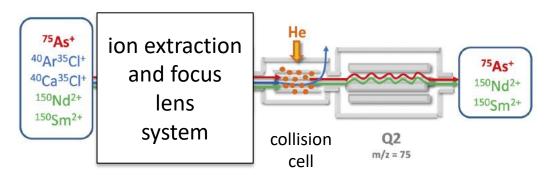
What about \$\$\$ instruments?



Single Quad ICP-MS (\$)

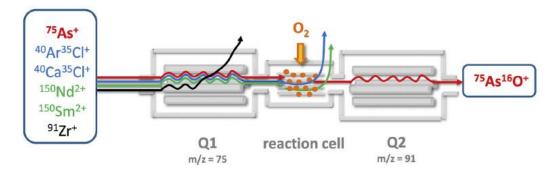
He collision gas mitigates polyatomic interferences

Triple Quad ICP-MS (\$\$\$)



Reaction gas (O₂) selectively reacts with interferences

What about \$\$\$ instruments?



Single Quad ICP-MS (\$)

He collision gas mitigates polyatomic interferences

Triple Quad ICP-MS (\$\$\$)

Reaction gas (O₂) selectively reacts with interferences

ASQL (30s), n=148	Interference	ICP-MS (KED)	ICP-QQQ
⁷⁵ As	⁴⁰ Ar ³⁵ Cl+	0.117 ng/g	0.108 ng/g
¹¹¹ Cd	⁹⁵ Mo ¹⁶ O ⁺	0.057 ng/g	0.052 ng/g

ICP-QQQ shows no improvement.
Interferences are sufficiently
mitigated by KED. LOD/LOQ
determined by blank contamination

FDA EAM 4.7 Quality Controls

Required Quality Controls

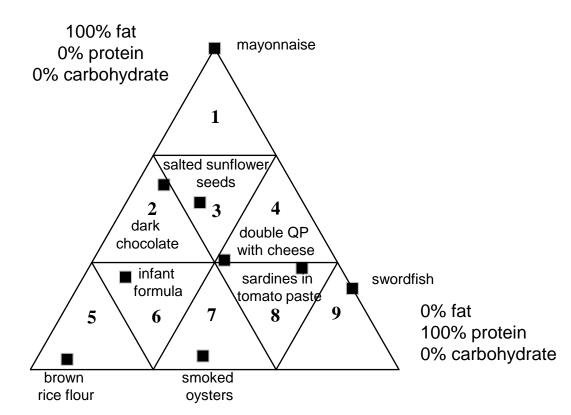
Internal Standard recovery 60-120% < 10% RSD Stability check (mid-level std) R > 0.995Calibration Curve Initial Calibration Verification (2nd source) + 10% **Continuing Calibration Blank** < ASQL QC Sa Continuing Calibration Verification ± 10% Reference Material ± 20% \CC\ Fortified Analytical Portion ± 20% Fortified Analytical Solution ± 10% **Duplicate Portions** < 20% RPD

Expanded uncertainty better than ± 15% when concentration > LOQ

FDA EAM 4.7 Validation

Validated in food matrices spanning food composition triangle

Used by FDA, USDA, state lab

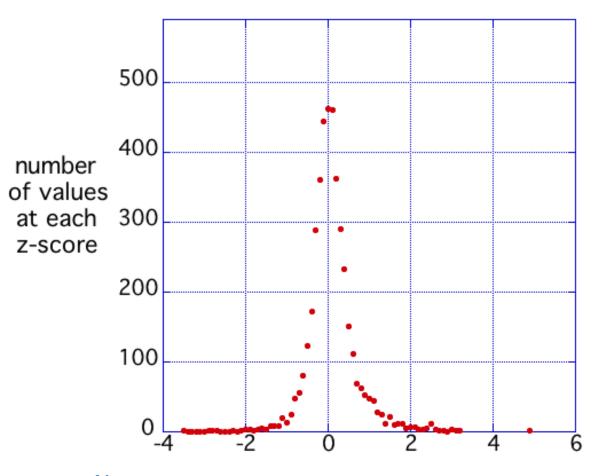

0% fat 0% protein 100% carbohydrate

partners, and some contract laboratories

GRAY & CUNNINGHAM: JOURNAL OF AOAC INTERNATIONAL Vol. 102, No. 2, 2019

RESIDUES AND TRACE ELEMENTS

Inductively Coupled Plasma Collision Cell Quadrupole Mass Spectrometric Determination of Extractible Arsenic, Cadmium, Chromium, Lead, Mercury, and Other Elements in Food Using Microwave-Assisted Digestion: Results from an FDA Interlaboratory Study


DOI: https://doi.org/10.5740/jaoacint.18-0129

FDA EAM 4.7 Validation

Z-score Distribution

(cumulative all food results >LOQ)

Total 4206 food analysis results above LOQ

Normal random distribution (Gaussian fit R=0.99)

93.1% of results -1 < z < +1

98.5% of results -2 < z < +2

99.4% of results -4 < z < +4

AOAC methods

FDA EAM 4.7

MLV in across all food groups

LODs

(for baby foods)

As: $0.25 \mu g/kg (ppb)$

Cd: $0.15 \mu g/kg (ppb)$

Pb: $0.35 \mu g/kg (ppb)$

Hg: $0.08 \mu g/kg$ (ppb)

AOAC 2013.06

AOAC 2015.01

AOAC methods

FDA EAM 4.7

MLV in across all food groups

LODs

(for baby foods)

As: $0.25 \mu g/kg (ppb)$

Cd: $0.15 \mu g/kg (ppb)$

Pb: $0.35 \mu g/kg (ppb)$

Hg: $0.08 \mu g/kg$ (ppb)

AOAC 2013.06

MLV in carrot, fish, mushroom, wheat, shellfish

LODs

As: $60 \mu g/kg (ppb)$

Cd: $30 \mu g/kg (ppb)$

Pb: 40 μg/kg (ppb)

Hg: $90 \mu g/kg (ppb)$

AOAC 2015.01

AOAC methods

FDA EAM 4.7

MLV in across all food groups

LODs

(for baby foods)

As: $0.25 \mu g/kg (ppb)$

Cd: $0.15 \mu g/kg (ppb)$

Pb: $0.35 \mu g/kg (ppb)$

Hg: $0.08 \mu g/kg$ (ppb)

AOAC 2013.06

MLV in carrot, fish, mushroom, wheat, shellfish

LODs

As: $60 \mu g/kg (ppb)$

Cd: $30 \mu g/kg (ppb)$

Pb: $40 \mu g/kg (ppb)$

Hg: $90 \mu g/kg (ppb)$

AOAC 2015.01

SLV* in infant formula, chocolate, rice flour, fruit juice

LODs

As: $4 \mu g/kg$ (ppb)

Cd: $2 \mu g/kg (ppb)$

Pb: $8 \mu g/kg (ppb)$

Hg: $6 \mu g/kg (ppb)$

* not multi-lab validated

Conclusions

Detection and Quantification limits (LOD/LOQ) are determined by the spread of method blank values

Effort required to quantify low ppb As, Cd, Pb, Hg

Validated methods needed to support Closer to Zero effort

U.S. FOOD & DRUG ADMINISTRATION

CENTER FOR FOOD SAFETY & APPLIED NUTRITION