Food Chemicals Codex | FCC_®

Elemental Impurities in Food Ingredients – Pathways to Reducing Levels

FCC Standards Related to Elemental Impurities – Plans and Opportunities

Eric Schwartz Ph.D. Senior Scientist I, Food Standards

Food Chemicals Codex

A compendium of internationally recognized standards for the identity and purity of food ingredients

SAFEGUARDING THE INTEGRITY OF THE FOOD SUPPLY

USP Food Ingredients Expert Committee

- USP Olive Oil Authenticity and Quality Expert Panel
- USP High-Value Food Oils Expert Panel
- USP Honey Expert Panel
- USP Dietary Proteins Expert Panel

FCC Standard Setting Process

- An open and transparent process and public participation is encouraged.
- Participation in the revision process results from the support of many individuals and groups
- The FCC Forum publishes twice annually is open to public comment for 90-days
- Public comments received in response to proposed FCC standards are reviewed and considered by the FIEC
- Proposed standards are finalized when the FIEC votes to make them effective text in FCC

SAFEGUARDING THE INTEGRITY OF THE FOOD SUPPLY

The Elements of an FCC Monograph

Food Chemicals

Monograph Example: 2'-Fucosyllactose

Add the following:

▲2′-FUCOSYLLACTOSE

D-Glucose, O-6-deoxy- α -L-galactopyranosyl-(1 \rightarrow 2)-O-B-D-galactopyranosyl-(1→4)-0-

6-Deoxy-α-L-galactopyranosyl- $(1 \rightarrow 2)$ -O-β-D-galactopyranosyl- $(1 \rightarrow 4)$ -D-glucose 4-O-(2-O-(6-O-Deoxy-α-L-galactopyranosyl)-β-

D-galactopyranosyl)-D-glucose

2'-O-Fucosyllactose

2'-FL

2'-O-L-FucosvI-D-lactose

Fucosyl-α-1,2-galactosyl-β-1,4-glucose

C18H32O15

Formula wt: 488.44 CAS RN®: 41263-94-9

DESCRIPTION

2'-Fucosyllactose occurs as a white to off-white powder or agglomerate. It is produced by fermentation using genetically engineered microorganisms. Following fermentation 2'-Fucosyllactose is purified, concentrated, and dried or crystallized to produce the ingredient of commerce. 2'-Fucosyllactose is a trisaccharide consisting of one molecule each of galactose, glucose, and fucose. It is freely soluble in water.

Function: Source of 2'-fucosyllactose; prebiotic Packaging and Storage: Store in sealed bags or containers, protected from light and moisture, in a dry place at room temperature.

IDENTIFICATION

- **A.** The retention time of the major peak in the chromatogram of Sample solution 1 corresponds to that of the main peak in the chromatogram of Standard solution 1. as obtained in the Assay
- B. OPTICAL (SPECIFIC) ROTATION, Appendix IIB Sample solution: Transfer 5.00 g of sample to a 50-mL volumetric flask, and dissolve in 40 mL of water. Add 0.1 mL of ammonia TS, allow to stand for 30 min, then dilute with water to volume. Acceptance criteria: $[\alpha]_{D}^{20}$ between -55.0° and -63.0°

ASSAY

Chemicals

Codex | FCC

 PROCEDURE Mobile phase: Acetonitrile, water, and triethylamine (69:31:0.1, v/v/v)

Diluent: Acetonitrile and water (60:40, v/v) Standard solution 1: 3.8 mg/mL of USP 2'-Fucosyllactose RS in *Diluent* by using a volumetric flask of at least 10 mL. Sonicate the mixture until the standard is dissolved, then dilute with Diluent to volume. Standard solution 2: 3.4 mg/mL of USP 2'-Fucosyllactose

RS in Diluent by using a volumetric flask of at least 10 mL. Sonicate the mixture until the standard is dissolved, then dilute with Diluent to volume.

Standard solution 3: 0.46 mg/mL of USP 2'-Fucosyllactose RS in Diluent. Transfer 3 mL of Standard solution 1 to a 25-mL volumetric flask and dilute with

Diluent to volume. System suitability solution 1: [NOTE-This procedure gives rise to detectable amounts of 2'-fucosyl-D-lactulose for peak identification.] Weigh 1 mg of D-lactose into a 5-mL volumetric flask. Add approximately 4 mL of Standard solution 2 as well as 5 µL of triethylamine. Dilute with Standard solution 2 to volume. Close the flask tightly using a safety clip or similar. Heat the flask for 30 min at 70°. After 30 min, cool the flask down to room temperature.

System suitability solution 2: Transfer 3 mL of Standard solution 1 to a 100-mL volumetric flask and dilute with Diluent to volume.

Sample solution 1: Prepare duplicate solutions containing 4.0 mg/mL of 2'-fucosyllactose in Diluent as follows. For each replicate, transfer an amount of sample equivalent to 100 mg of 2'-fucosyllactose on the anhydrous basis to a 25-mL volumetric flask and add about 20 mL of Diluent to the flask. Sonicate for about 5 min to dissolve the sample, cool to room temperature, and dilute with Diluent to volume

[NOTE-Sample solution 1 is used in the Assay. The dilution provided is based on a sample containing 85%-100% of 2'-fucosyllactose. Adjust the dilution for products with 2'-fucosyllactose outside of this range.]

Sample solution 2: Prepare duplicate solutions containing 40 mg/mL of 2'-fucosyllactose in *Diluent* as follows. For each replicate, transfer an amount of sample equivalent to 1000 mg of 2'-fucosyllactose on the anhydrous basis to a 25-mL volumetric flask and add about 20 mL of Diluent to the flask. Sonicate for about 5 min to dissolve the sample, cool to room temperature, and dilute with Diluent to volume.

[NOTE—Sample solution 2 is used in the test for Related Compounds in Specific Tests. The dilution provided is based on a sample containing 0.3%–5% Related Compounds. Adjust the dilution for products with Related Compounds outside of this range.1

Blank: Diluent

Chromatographic system, Appendix IIA

Mode: HPLC Detector: Refractive index

Detector cell temperature: 35°

Columns: Use three 4.6-mm × 250-mm analytical columns with 3.5-µm particles covalently modified with alkyl amide groups (without being endcapped)¹ connected in series. Use a 3.9-mm × 5-mm precolumn with the same particle size and stationary phase.²

Column temperature: 60°

Flow rate: 1.2 mL/min

Injection volume: 100 µL Run time: 35 min

System suitability

Samples: System suitability solution 1. System suitability solution 2, and Blank

Suitability requirements

Resolution: NLT 1.5 between 2'-fucosyl-D-lactulose and D-lactose, System suitability solution 1. [NOTE-Use the Reference Chromatogram provided with USP 2'-Fucosyllactose RS for peak identification.]

¹ Waters XBridge BEH Amide, or equivalent. ² Waters XBridge BEH Amide VanGuard cartridge, or equivalent. Relative standard deviation: NMT 2.0% for the 2'-fucosyllactose peak area for six replicate injections. Standard solution 1

Signal-to-noise ratio: NLT 10, System suitability solution 2

Peak interference: No peak at the retention time for 2'-fucosyllactose, Blank

Analysis: Using this sequence, separately inject Standard solution 3, Standard solution 2, Standard solution 1, Sample solution 1 (duplicate solutions), and Sample solution 2 (duplicate solutions) into the chromatograph and record the resulting chromatograms. Use the chromatogram of Standard solution 1 to identify the peak of 2'-fucosyllactose in the chromatograms of Sample solution 1. Generate a standard curve, not forced through the origin, for 2'-fucosyllactose using the peak areas and concentrations of Standard solution 1 and Standard solution 2. For each replicate of Sample solution 1, determine the amount in mg/mL of 2'-fucosyllactose in the replicate based on comparison to the standard curve. Calculate the percentage of 2'-fucosyllactose in the portion of the sample taken:

Result = $(C_1/C_2) \times 100$

- C_1 = concentration of 2'-fucosyllactose in Sample solution 1, obtained from the standard curve (ma/mL)
- C_2 = concentration of Sample solution 1 on the anhydrous basis (mg/mL)

Determine the average result, in percent, for the two replicates of Sample solution 1.

Acceptance criteria: NLT 82%, calculated on the anhydrous basis

IMPURITIES

- anhydrous basis
- Acceptance criteria: NMT 0.1 mg/kg, calculated on the

anhydrous basis

SPECIFIC TESTS RELATED COMPOUNDS

Analysis: Identify the peaks for L-fucose, D-lactose, 3,2'-difucosyl-D-lactose, 2'-fucosyllactose, and 2'-fucosyl-D-lactulose in the chromatograms of Sample solution 2 obtained in the Assay by comparison to the chromatograms of Standard solution 1 (for the location of the 2'-fucosyllactose peak) and using the approximate relative retention times listed in Table 1.

Table 1. Approximate Relative Retention Times

Compound	Approximate Relative Retention Time
L-Fucose	0.5
2'-Fucosyl-D-lactulose	0.8
D-Lactose	0.9
2'-Fucosyllactose	1.0
3,2'-Difucosyl-D-lactose	1.3

Generate a standard curve of 2'-fucosyllactose using the peak area and concentration of Standard solution 3 and forcing the calibration curve through the origin. For

each replicate of Sample solution 2, determine the concentration of L-fucose, D-lactose, 3,2'-difucosyl-D-lactose, and 2'-fucosyl-D-lactulose in the replicate based on comparison to the standard curve, in mg/mL (as 2'-fucosyllactose). Calculate the percentage of each compound in the

portion of the sample taken:

Result = $(C_3/C_4) \times 100$

 C_3 = concentration of the analyte of interest (as 2'-fucosyllactose) in Sample solution 2, obtained from the standard curve (mg/mL)

 C_4 = concentration of Sample solution 2 on the anhydrous basis (mg/mL)

Determine the average result for each analyte, in percent and calculated as 2'-fucosyllactose, for the two replicates of Sample solution 2. Acceptance criteria: See Table 2.

Table 2

Compound(s)	Acceptance Criteria		
2'-Fucosyllactose as determined in the Assay + L-fucose + D-lactose + 3,2'-difucosyl-D-lactose	NLT 92%, calculated as 2'-fucosyl- lactose on the anhydrous basis		
D-Lactose	NMT 8.0%, calculated as 2'-fucosyl- lactose on the anhydrous basis		
3,2'-Difucosyl-D-lactose	NMT 7.0%, calculated as 2'-fucosyl- lactose on the anhydrous basis		
L-Fucose	NMT 3.0%, calculated as 2'-fucosyl- lactose on the anhydrous basis		
2'-Fucosyl-D-lactulose	NMT 2.0%, calculated as 2'-fucosyl- lactose on the anhydrous basis		

RESIDUE ON IGNITION (SULFATED ASH), Appendix IIC

Acceptance criteria: NMT 2.0% • PH, pH Determination, Appendix IIB Sample: 50 mg/mL Acceptance criteria: 3.0-7.5 WATER, Water Determination, Karl Fischer Titrimetric Method, Appendix IIB

Acceptance criteria: NMT 9.0% IS (FCC 13)

Inorganic Impurities ARSENIC, Elemental Impurities by ICP, Appendix IIIC Acceptance criteria: NMT 0.2 mg/kg, calculated on the • LEAD, Elemental Impurities by ICP, Appendix IIIC

Monograph Example: 2-FL

Add the following:

^2'-FUCOSYLLACTOSE

D-Glucose, O-6-deoxy-α-L-galactopyranosyl-(1→2)-O-β-D-galactopyranosyl-(1→4)- Standard solution 3: 0.46 mg/mL of USP 2'-Fucosyllactose RS in *Diluent*. Transfer 3 mL of *Standard solution* 1 to a 25-mL volumetric flask and dilute with *Diluent* to volume. System suitability solution 1: [NOTE—This procedure gives rise to detectable amounts of 2'-fucosyl-D-lactulose for peak identification.] Weigh 1 mg of D-lactose into a 5-mL volumetric flask. Add approximately 4 mL of *Standard*

Relative standard deviation: NMT 2.0% for the 2'-fucosyllactose peak area for six replicate injections, Standard solution 1 Signal-to-noise ratio: NLT 10, System suitability solution 2 Peak interference: No peak at the retention time for 2'-fucosyllactose, Blank advision the reference bely in subndard each replicate of Sample solution 2, determine the concentration of L-fucose, D-lactose, 3,2'-difucosyl-D-lactose, and 2'-fucosyl-D-lactulose in the replicate based on comparison to the standard curve, in mg/mL (as 2'-fucosyllactose). Calculate the percentage of each compound in the portion of the sample taken:

IMPURITIES Inorganic Impurities

- **ARSENIC**, Elemental Impurities by ICP, Appendix IIIC
- Acceptance criteria: NMT 0.2 mg/kg, calculated on the anhydrous basis
- LEAD, Elemental Impurities by ICP, Appendix IIIC Acceptance criteria: NMT 0.1 mg/kg, calculated on the anhydrous basis

PROCEDURE Mobile phase: Acetonitrile, water, and triethylamine (69:31:0.1, v/v/v) Diluent: Acetonitrile and water (60:40, v/v) Standard solution 1: 3.8 mq/mL of USP 2'-Fucosyllactose

Standard solution 1: 3.8 mg/mL or USP 2 -Fucosyllactose RS in Diluent by using a volumetric flask of at least 10 mL. Sonicate the mixture until the standard is dissolved, then dilute with Diluent to volume. Standard solution 2: 3.4 mg/mL of USP 2'-Fucosyllactose

Standard solution 2: 3.4 mg/mL of USP 2'-Fucosyllactose RS in *Diluent* by using a volumetric flask of at least 10 mL Sonicate the mixture until the standard is dissolved, then dilute with *Diluent* to volume.

0.1.1.	100	
Run time: 35 min		
System suitability		

Samples: System suitability solution 1, System suitability solution 2, and Blank Suitability requirements Recolution: NIT 1, Shetween 2' fucosed D lactulose

Resolution: NLT 1.5 between 2'-fucosyl-D-lactulose and D-lactose, System suitability solution 1. [NoTE—Use the Reference Chromatogram provided with USP 2'-Fucosyllactose RS for peak identification.]

¹Waters XBridge BEH Amide, or equivalent. ²Waters XBridge BEH Amide VanGuard cartridge, or equivalent.

-Fucose	0.5	
2'-Fucosyl-D-lactulose	0.8	
D-Lactose	0.9	_
2'-Fucosyllactose	1.0	_
3,2'-Difucosyl-D-lactose	1.3	_

Generate a standard curve of 2'-fucosyllactose using the peak area and concentration of *Standard solution 3* and forcing the calibration curve through the origin. For

FCC Appendix Items Related to Elemental Impurities and Plasma Spectrochemistry

- Appendix III: Chemical Tests and Determinations
 - Lead, Arsenic, Chloride, Sulfate Limit Tests
 - Flame Atomic Absorption Spectrophotometric Method
 - Atomic Absorption Spectrophotometric Graphite Furnace Method
 - Elemental Impurities by ICP
 - Method I ICP-OES
 - Method II ICP-MS
- Appendix II: Physical Tests and Determinations
 - Plasma Spectrochemistry
 - Sample Preparation and Introduction
 - Standard Preparation
 - ICP (AES and MS)

FCC Appendix Items Related to Elemental Impurities and Plasma Spectrochemistry

- Appendix III: Chemical Tests and Determinations
 - Lead, Arsenic, Chloride, Sulfate Limit Tests
 - Flame Atomic Absorption Spectrophotometric Method
 - Atomic Absorption Spectrophotometric Graphite Furnace Method
 - Elemental Impurities by ICP
 - Method I ICP-OES
 - Method II ICP-MS

Analytical procedures for Elemental Impurities by ICP recently revised (June 2022 FCCF Proposal)

- Appendix II: Physical Tests and Determinations
 - Plasma Spectrochemistry
 - Sample Preparation and Introduction
 - Standard Preparation
 - ICP (AES and MS)

FCC's Plans for Elemental Impurities

- Review of Limits in Monographs
 - Key ingredients (initial focus on ingredients important to vulnerable populations)
 - Create limits based on ingredient use (infant formula vs. general use)
- Review of Appendices
 - Elemental Impurities Procedures (Appendix III: Chemical Tests and Determinations)
 - Plasma Spectrochemistry (Appendix II: Physical Tests and Determinations)
- New Appendix or Appendix content
 - Potentially include guidelines for stakeholders on approaches to reduce elemental impurities
 - New appendix content

FCC Mechanisms for Collaboration and Request for Feedback

- FCC relies heavily on stakeholder input
- Platforms for providing input
 - Commenting on Proposals
 - Open Forums
 - Stakeholder Forms
 - Workshops

• Feedback

- Where should FCC prioritize its work to have the greatest impact?
- Technical input and data needed!
- Other areas where FCC can contribute towards efforts to lower exposure to elemental impurities?

Our mission: **To grow our partnerships** with industry and regulatory stakeholders through collaborative, ongoing dialogue in an open setting with the goal of improving our standards.

https://www.usp.org/get-involved/provide-input/stakeholder-forums

Stay Connected

eric.schwartz@usp.org