Dehydrated Alcohol

Portions of this monograph that are national USP text, and are not part of the harmonized text, are marked with symbols (\bullet_{\bullet}) to specify this fact.

C₂H₆O Ethanol; 46.07

Ethyl alcohol [64-17-5].

DEFINITION

Dehydrated Alcohol contains NLT 99.2% by weight, corresponding to NLT 99.5% by volume, at 15.56°, of

IDENTIFICATION

- **A.** It meets the requirements of the test for *Specific*
- B. INFRARED ABSORPTION (1975) or (197F): Neat

IMPURITIES

LIMIT OF NONVOLATILE RESIDUE

Sample: 100 mL of Dehydrated Alcohol

Analysis: Evaporate the Sample in a tared dish on a

water bath, and dry at 100°-105° for 1 h.

Acceptance criteria: The weight of the residue is NMT 2.5 mg.

ORGANIC IMPURITIES

Sample solution A: Substance to be examined

Sample solution B: 300 μL/L of 4-methylpentan-2-ol in

Sample solution A

Standard solution A: 200 µL/L of methanol in *Sample*

solution A

Standard solution B: 10 μ L/L of methanol and 10 μ L/L

of acetaldehyde in Sample solution A

Standard solution C: 30 µL/L of acetal in Sample solu-

Standard solution D: 2 µL/L of benzene in Sample so-

lution A

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: GC

Detector: Flame ionization

Column: $0.32\text{-mm} \times 30\text{-m}$ fused-silica capillary;

bonded with a 1.8-µm layer of phase G43

Split ratio: 20:1 **Temperatures**

Injection port: 200° Detector: 280° Column: See Table 1.

Table 1

Initial Tempera- ture (°)	Tempera- ture Ramp (°/min)	Final Tempera- ture (°)	Hold Time at Final Tempera- ture (min)
40	0	40	12
40	10	240	10

Flow rate: 35 cm/s Carrier gas: Helium Injection volume: 1.0 μL System suitability

Sample: Standard solution B Suitability requirements

Resolution: NLT 1.5 between the first major peak (acetaldehyde) and the second major peak (methanol)

Analysis

Samples: Sample solution A, Sample solution B, Standard solution A, Standard solution B, Standard solution C, and Standard solution D

Methanol calculation

Result =
$$r_U/r_S$$

= peak area of methanol from Sample solution A = peak area of methanol from Standard solution

Acetaldehyde calculation (sum of acetaldehyde and

Result = {
$$[A_E/(A_T - A_E)] \times C_A$$
} + { $[D_E/(D_T - D_E)] \times C_D \times (M_{rI}/M_{r2})$ }

= peak area of acetaldehyde from Sample solution A

= peak area of acetaldehyde from Standard solution B

 C_A = concentration of acetaldehyde in *Standard* solution B (μ L/L) = peak area of acetal from Sample solution A

 D_{E} = peak area of acetal from Standard solution C = concentration of acetal in Standard solution C C_D $(\mu L/L)$

 M_{r1} = molecular weight of acetaldehyde, 44.05

 M_{r2} = molecular weight of acetal, 118.2

Benzene calculation

Result =
$$[B_E/(B_T - B_E)] \times C_B$$

= peak area of benzene from Sample solution A = peak area of benzene from Standard solution D Вт C_B = concentration of benzene in *Standard solution* $D (\mu L/L)$

[NOTE—If necessary, the identity of benzene can be confirmed using another suitable chromatographic system (stationary phase with a different polarity).]

Any other impurity calculation

Result =
$$(r_U/r_M) \times C_M$$

= peak area of each impurity from Sample solution B

= peak area of 4-methylpentan-2-ol from Sample r_M solution B

= concentration of 4-methylpentan-2-ol in Sample solution B (μ L/L)

Acceptance criteria: See Täble 2.

Table 2

Name	Acceptance Criteria	
Methanol	NMT 0.5, corresponding to 200 μL/L	
Acetaldehyde and acetal	NMT 10 μL/L, expressed as acetaldehyde	

 $^{^{}a}$ Disregard any peaks of less than 9 μ L/L (0.03 times the area of the peak corresponding to 4-methylpentan-2-ol in the chromatogram obtained with Sample solution B).

Table 2 (Continued)

Name	Acceptance Criteria
Benzene	NMT 2 μL/L
Sum of all other impurities ^a	NMT 300 μL/L

 $^{^{\}text{a}}$ Disregard any peaks of less than 9 $\mu L/L$ (0.03 times the area of the peak corresponding to 4-methylpentan-2-ol in the chromatogram obtained with Sample solution B).

SPECIFIC TESTS

***SPECIFIC GRAVITY** (841): NMT 0.7962 at 15.56°, indicating NLT 99.2% of C₂H₅OH by weight_◆

Change to read:

ULTRAVIOLET ABSORPTION

Analytical wavelength: 235-340 nm

Cell: 5 cm Reference: Water Acceptance criteria

Absorbance: NMT 0.40 at 240 nm; NMT 0.30 between 250 and 260 nm; NMT 0.10 between 270 and

Curve: The spectrum shows a steadily descending 25 (USP38) curve with no observable peaks or shoulders.

*CLARITY OF SOLUTION

[NOTE—The Sample solution is to be compared to Standard suspension A and to water in diffused daylight 5 min after preparation of Standard suspension A.

Hydrazine solution: 10 mg/mL of hydrazine sulfate in water. Allow to stand for 4–6 h.

Methenamine solution: Transfer 2.5 g of methenamine to a 100-mL glass-stoppered flask, add 25.0 mL

of water, insert the glass stopper, and mix to dissolve. **Primary opalescent suspension**: Transfer 25.0 mL of Hydrazine solution to the Methenamine solution in the 100-mL glass-stoppered flask. Mix, and allow to stand for 24 h. This suspension is stable for 2 months, provided it is stored in a glass container free from surface defects. The suspension must not adhere to the glass and must be well mixed before use.

Opalescence standard: Transfer 15.0 mL of the Primary opalescent suspension to a 1000-mL volumetric flask, and dilute with water to volume. This suspension should not be used beyond 24 h after preparation.

Standard suspension A: Dilute 5.0 mL of the *Opales*cence standard with water to 100.0 mL.

Standard suspension B: Dilute 10.0 mL of the Opales-

cence standard with water to 100.0 mL.

Sample solution A: Substance to be examined Sample solution B: 1.0 mL of Sample solution A diluted with water to 20 mL. Allow to stand for 5 min before

testing.

Blank: Water Analysis

Samples: Standard suspension A, Standard suspension B, Sample solution A, Sample solution B, and Blank

Transfer a sufficient portion of Sample solution A and Sample solution B to separate test tubes of colorless, transparent, neutral glass with a flat base and an internal diameter of 15–25 mm to obtain a depth of 40 mm. Similarly transfer portions of Standard suspension A, Standard suspension B, and Blank to separate matching test tubes. Compare samples in diffused daylight, viewing vertically against a black background (see Spectrophotometry and Light-Scattering (851), Visual Comparison). The diffusion of light must be such that Standard suspension A can be readily distinguished from water, and Standard suspension B can be readily distinguished from Standard suspension A.

Acceptance criteria: Sample solution A and Sample solution B show the same clarity as that of water, or their opalescence is not more pronounced than that of Standard suspension A.

ACIDITY OR ALKALINITY

Phenolphthalein solution: Dissolve 0.1 g of phenolphthalein in 80 mL of alcohol, and dilute with water to

Sample: 20 mL of Dehydrated Alcohol

Analysis: To the Sample add 20 mL of freshly boiled and cooled water and 0.1 mL of Phenolphthalein solution. The solution is colorless. Add 1.0 mL of 0.01 N sodium hydroxide.

Acceptance criteria: The solution is pink (30 µg/g, expressed as acetic acid).

***COLOR OF SOLUTION**

Standard stock solution: Combine 3.0 mL of ferric chloride CS, 3.0 mL of cobaltous chloride CS, 2.4 mL of cupric sulfate CS, and 1.6 mL of dilute hydrochloric acid (10 mg/mL)

Standard solution: 1.0 mL of Standard stock solution, diluted with dilute hydrochloric acid (10 mg/mL) to 100 mL. Prepare the Standard solution immediately before use.

Sample solution: Substance to be examined Blank: Water Analysis

Samples: Standard solution, Sample solution, and Blank Transfer a sufficient portion of each of the Samples to individual test tubes of colorless, transparent, neutral glass with a flat base and an internal diameter of 15-25 mm to obtain a depth of 40 mm. Compare the Samples in diffused daylight, viewing vertically against a white background (see Spectrophotometry and Light-Scattering (851), Visual Comparison).

Acceptance criteria: The Sample solution has the ap-

pearance of water or is not more intensely colored than the *Standard solution*.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers, protected from light.
- **USP REFERENCE STANDARDS** (11) USP Dehydrated Alcohol RS